Paper 9 Bayesian analysis of joint mean and covariance models for longitudinal data

(Xu, Zhang, and Wu 2014)

9.1 Abstract

Use MCD to within-subject covariance matrix. Propose a fully Bayesian inference for joint mean and covariance model. Combines the Gibbs sampler and Metropolis-Hastings.

9.2 Introduction

(Mao and Zhu, n.d.) 得看一眼,还有(Xu, Zhang, and Wu 2013) 以上格式是懒得下载papers里了,以后再弄,不想打断思路 [11] T.I.LinandW.L.Wang,Bayesianinferenceinjointmodellingoflocationandscaleparametersofthetdistribution for longitudinal data

proposed a fully Bayesian inference for semiparametric joint mean and variance models on the basis of B-spline approximation of nonparametric omponents.

This paper extend (Cepeda and Gamerman 2000) and Lin and Wang to fit JMCM. Reason: - It allows the use of genuine prior information for achieving better results - Sampling based Bayesian methods do not depend on asymptotic theory, give more reliable results with small sample sizes

这个没懂,基于样本的贝叶斯方法不依赖渐进理论?

  • Provides a whole posterior distribution for the parameters of interest, from which different estimates.

Bayesian approach to jmcm is developed based on the hybrid algorithms: combining Gibbs sampler and MH algorithm.

9.3 Joint mean and covariance models

日常的自回归形式

\[ Y_{i j}-\mu_{i j}=\sum_{k=1}^{j-1} l_{i j k} \varepsilon_{i k}+\varepsilon_{i j}, \quad j=2, \ldots, m_{i} \]

日常的三套方程

\[ g\left(\mu_{i j}\right)=X_{i j}^{\mathrm{T}} \beta, \quad l_{i j k}=Z_{i j k}^{\mathrm{T}} \gamma, \quad \log \left(\sigma_{i j}^{2}\right)=H_{i j}^{\mathrm{T}} \lambda \]

日常的log-likelihood

\[ \begin{aligned} \ell(\theta | Y, X, Z, H) &=-\frac{1}{2} \sum_{i=1}^{n} \log \left(\left|\Sigma_{i}\right|\right)-\frac{1}{2} \sum_{i=1}^{n}\left(Y_{i}-\mu_{i}\right)^{\mathrm{T}} \Sigma_{i}^{-1}\left(Y_{i}-\mu_{i}\right) \\ &=-\frac{1}{2} \sum_{i=1}^{n} \log \left(\left|D_{i}\right|\right)-\frac{1}{2} \sum_{i=1}^{n} \varepsilon_{i}^{\mathrm{T}} D_{i}^{-1} \varepsilon_{i} \end{aligned} \]

9.4 Bayesian analysis of JMVMs(jmcm)

9.4.1 Prior

\[ \beta \sim N\left(\beta_{0}, \Sigma_{\beta}\right), \gamma \sim N\left(\gamma_{0}, \Sigma_{\gamma}\right),\lambda \sim N\left(\lambda_{0}, \Sigma_{\lambda}\right) \]

9.4.2 Gibbs sampling and conditional distribution

  • Sampling \(\beta\) \[ \begin{array}{l}{p\left(\beta | Y, X, Z, H, \gamma^{(l)}, \lambda^{(l)}\right)} \\ {\propto \exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(Y_{i}-\mu_{i}\right)^{\mathrm{T}} \Sigma_{i}^{(l)-1}\left(Y_{i}-\mu_{i}\right)-\frac{1}{2}\left(\beta-\mu_{\beta}\right)^{\mathrm{T}} \Sigma_{\beta}^{-1}\left(\beta-\mu_{\beta}\right)\right\}}\end{array} \] with \[ \beta | Y, X, Z, H, \gamma^{(l)}, \lambda^{(l)} \sim N\left(b^{*}, B^{*}\right) \]

where \[ b^{*}=B^{*}\left(\sum_{i=1}^{n} X_{i}^{\mathrm{T}} \Sigma_{i}^{(l)^{-1}} Y_{i}+\Sigma_{\beta}^{-1} \mu_{\beta}\right) \text { and } B^{*}=\left(\Sigma_{\beta}^{-1}+\sum_{i=1}^{n} X_{i}^{\mathrm{T}} \Sigma_{i}^{(l)^{-1}} X_{i}\right)^{-1} \]

  • Sampling \(\gamma\)

\[ p\left(\gamma | Y, X, Z, H, \beta^{(l+1)}, \lambda^{(l)}\right) \propto \exp \left\{-\frac{1}{2} \sum_{i=1}^{n} \varepsilon_{i}^{\mathrm{T}} D_{i}^{(l)-1} \varepsilon_{i}-\frac{1}{2}\left(\gamma-\mu_{\gamma}\right)^{\mathrm{T}} \Sigma_{\gamma}^{-1}\left(\gamma-\mu_{\gamma}\right)\right\} \]

  • Sampling \(\lambda\) \[ \begin{array}{l}{p\left(\lambda | Y, X, Z, H, \beta^{(l+1)}, \gamma^{(l+1)}\right)} \\ {\quad \propto \exp \left\{-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} H_{i j}^{\mathrm{T}} \lambda-\frac{1}{2} \sum_{i=1}^{n} \varepsilon_{i}^{(l+1) \mathrm{T}} D_{i}^{-1} \varepsilon_{i}^{(l+1)}-\frac{1}{2}\left(\lambda-\mu_{\lambda}\right)^{\mathrm{T}} \Sigma_{\lambda}^{-1}\left(\lambda-\mu_{\lambda}\right)\right\}}\end{array} \]

MH update process:

proposal: \(N\left(\beta^{(l)}, \sigma_{\beta}^{2} \Omega_{\beta}^{-1}\right), N\left(\gamma^{(l)}, \sigma_{\gamma}^{2} \Omega_{\gamma}^{-1}\right) \text { and } N\left(\lambda^{(l)}, \sigma_{\lambda}^{2} \Omega_{\lambda}^{-1}\right)\). with

\[ \begin{array}{l}{\Omega_{\beta}=\Sigma_{\beta}^{-1}+\sum_{i=1}^{n} X_{i}^{\mathrm{T}} \Delta_{i} \Sigma_{i}^{-1} \Delta_{i} X_{i}} \\ {\Omega_{\gamma}=\Sigma_{\gamma}^{-1}+\sum_{i=1}^{n} \frac{\partial \varepsilon_{i}^{\mathrm{T}}}{\partial \gamma} D_{i}^{-1} \frac{\partial \varepsilon_{i}}{\partial \gamma}} \\ {\Omega_{\lambda}=\Sigma_{\lambda}^{-1}+\frac{1}{2} \sum_{i=1}^{n} H_{i} H_{i}^{\mathrm{T}}}\end{array} \]

基本上没啥新东西值得借鉴,除了这块很诡异的proposal的形式,咋还求上导数了呢,这样会好很多么。哦对了还可以对非Normal data也成立,不过大部分东西都用不了了。

References

Xu, Dengke, Zhongzhan Zhang, and Liucang Wu. 2014. “Bayesian analysis of joint mean and covariance models for longitudinal data.” Journal of Applied Statistics 41 (11): 2504–14.

Mao, Jie, and Zhongyi Zhu. n.d. “Joint mean-covariance models with applications to longitudinal data in partially linear model.” Communications in Statistics-Theory and Methods.

Xu, Dengke, Zhongzhan Zhang, and Liucang Wu. 2013. “Joint variable selection of mean-covariance model for longitudinal data.” Open Journal of Statistics, February.

Cepeda, Edilberto, and Dani Gamerman. 2000. “Bayesian modeling of variance heterogeneity in normal regression models.” Brazilian Journal of Probability and Statistics 14 (2): 207–21.